References

1
Blanchard, P. Complex Analytic Dynamics on the Riemann Sphere, B.A.M.S. Vol. II, No.1, 1984, 85-141.

2
Branner, B. The Mandelbrot Set. In Chaos and Fractals: The Mathematics Behind the Computer Graphics. Amer. Math. Soc. (1989), 75-106.

3
Devaney, R. L. The Mandelbrot and Julia Sets: A Toolkit of Dynamics Activities Key Curriculum Press, Emeryville, CA.

4
Devaney, R. L. Chaos, Fractals, and Dynamics: Computer Experiments in Mathematics Addison-Wesley Co., Menlo Park, Calif., 1989.

5
Devaney, R. L. (ed.) Complex Analytic Dynamics: The Mathematics Behind the Mandelbrot and Julia Sets American Mathematical Society, Providence, 1994.

6
Devaney, R. L. The Orbit Diagram and the Mandelbrot Set. The College Mathematics Journal. 22 (1991), 23-38.

7
Devaney, R. L. The Fractal Geometry of the Mandelbrot Set. I: The Periods of the Bulbs. Available as hypertext at http://math.bu.edu/DYSYS/FRACGEOM/FRACGEOM.html

8
Devaney, R. L. The Fractal Geometry of the Mandelbrot Set. II: How to Add and How to Count. Fractals 3 No. 4, 1995, 629-640.

9
Devaney, R. L. The Mandelbrot Set, the Farey Tree, and the Fibonacci Sequence. Amer. Math. Monthly 106 (1999), 289-302.

10
Devaney, R. L. and Keen, L., eds. Chaos and Fractals: The Mathematics Behind the Computer Graphics American Mathematical Society, Providence, 1989.

11
Fatou, P., Sur l'Itération des fonctions transcendentes Entières, Acta Math. 47 (1926), 337-370.

12
Georges, J., Johnson, D., and Devaney, R. A First Course in Chaotic Dynamical Systems Software Addison-Wesley, Reading, MA 1992.

13
Julia, G. Iteration des Applications Fonctionelles, J. Math. Pures Appl. (1918), 47-245.

14
Keen, L. Julia Sets. In Chaos and Fractals: The Mathematics Behind the Computer Graphics. Amer. Math. Soc. (1989), 57-74.

15
Mandelbrot, B., The Fractal Geometry of Nature, Freeman & Co., San Francisco, 1982.


up Fractal Geometry of the Mandelbrot Set (Cover Page)
previous 8 Summary (Previous Section)