References
- 1
- Blanchard, P. Complex Analytic Dynamics on the Riemann
Sphere, B.A.M.S. Vol. II, No.1, 1984, 85-141.
- 2
- Branner, B. The Mandelbrot Set. In Chaos and Fractals: The
Mathematics Behind the Computer Graphics. Amer. Math. Soc. (1989),
75-106.
- 3
- Devaney, R. L.
The Mandelbrot and Julia Sets: A Toolkit of Dynamics
Activities
Key Curriculum Press, Emeryville, CA.
- 4
- Devaney, R. L.
Chaos, Fractals, and Dynamics:
Computer Experiments in Mathematics Addison-Wesley Co., Menlo Park,
Calif., 1989.
- 5
- Devaney, R. L. (ed.)
Complex Analytic Dynamics: The
Mathematics Behind the Mandelbrot and Julia Sets American
Mathematical Society, Providence, 1994.
- 6
- Devaney, R. L. The Orbit Diagram and the Mandelbrot Set.
The College Mathematics Journal. 22 (1991), 23-38.
- 7
- Devaney, R. L. The Fractal Geometry of the Mandelbrot
Set. I: The Periods of the Bulbs. Available as hypertext at
http://math.bu.edu/DYSYS/FRACGEOM/FRACGEOM.html
- 8
- Devaney, R. L. The Fractal
Geometry of the Mandelbrot
Set. II: How to Add and How to Count. Fractals 3
No. 4, 1995, 629-640.
- 9
- Devaney, R. L.
The Mandelbrot Set, the Farey Tree, and the Fibonacci
Sequence. Amer. Math. Monthly 106 (1999), 289-302.
- 10
- Devaney, R. L. and Keen, L., eds.
Chaos and
Fractals: The Mathematics Behind the Computer Graphics American
Mathematical Society, Providence, 1989.
- 11
- Fatou, P., Sur l'Itération des fonctions transcendentes
Entières, Acta Math. 47 (1926), 337-370.
- 12
- Georges, J.,
Johnson, D., and Devaney, R.
A First
Course in Chaotic Dynamical Systems Software Addison-Wesley,
Reading, MA 1992.
- 13
- Julia, G. Iteration des Applications Fonctionelles,
J. Math. Pures Appl. (1918), 47-245.
- 14
- Keen, L. Julia Sets. In Chaos and Fractals: The
Mathematics Behind the Computer Graphics. Amer. Math. Soc. (1989),
57-74.
- 15
- Mandelbrot, B., The Fractal Geometry of Nature,
Freeman & Co., San Francisco, 1982.
Fractal Geometry of the Mandelbrot Set (Cover Page)
8 Summary (Previous Section)